Manuscript preparation and submission guidelines:

Papers (not previously published or presented) from all the fields of accelerators are solicited, including low- and high-energy machines and accelerators for medical and industrial purposes, and accelerator subsystems.

Authors are requested to prepare the paper as per JACoW manuscript template. Manuscript shall be 3 pages long. The accepted file extensions are .doc, .docx. The upload size limit is 2000 KB.

Main and Sub-Classification of Manuscript:

All contributions are grouped by Main and Sub-Categories. Authors are reminded that it is their responsibility to properly classify their manuscript to ensure that, if accepted for presentation, the paper is properly placed within the conference programme. A description of the Subject Categories are given below:

Subject Categories

1. Main Categories

Sr.	Main category	Category code*
A	Electron Accelerators & Photon Sources	CP1
В	Hadron Accelerators	CP2
C	Beam Dynamics and EM Fields	CP3
D	Novel Particle Sources and Acceleration Techniques	CP4
E	Accelerator Technology	CP5
F	Beam Instrumentation, Controls, Feedback and Operational Aspects	CP6
G	Applications of Accelerators, Technology Transfer and Industrial	
G	Relations	CP7

^{*}Main category and sub category code along with unique id is prefixed with the submitted file name.

2. Sub-Categories

A. Electron Accelerators & Photon Sources

Classification covers electron accelerators (linear, circular, recirculating, etc.) and photon sources (synchrotron light sources, ERLs, FELs, laser systems, other free-electron sources such as THz sources, Compton sources, etc.). It includes insertion devices such as planar and helical field undulators; associated accelerator systems (e.g. injectors, booster synchrotrons, photon beam lines and photon beam line components). It includes the following:

A1. Electrostatic Accelerators	A7. Electron Sources
A2. Linear Accelerators	A8. Beam Injection/Extraction and Transport
A3. Circular Accelerators	A9. Undulators and Wigglers
A4. Synchrotron Radiation Facilities	A10. Lasers
A5. Other Accelerators and Storage Rings	A11. Photon Beam Lines and Components
A6. Free-Electron Lasers	

B) Hadron Accelerators

Classification is devoted to hadron accelerators, excluding hadron colliders. This category also includes proton and ion synchrotrons, antiproton accumulators and collectors, ion accumulator and storage rings, synchrocyclotrons, fixed-field alternating gradient accelerators and any other similar machines. Both low-and high-intensity machines are covered, as are all relevant aspects of high-intensity fixed-target accelerators such as proton drivers for spallation neutron sources, neutrino factories, etc. It includes the following:

B1. Electrostatic Accelerators	B5. Other Accelerators and Storage Rings	
B2. Cyclotrons	B6. Radioactive Ion Beams	
B3. Proton and Ion Linear Accelerators	B7. Proton and Ion Sources	
B4. Circular Accelerators	B8. Beam Injection/Extraction and Transport	

C) Beam Dynamics and EM Fields

This classification covers linear and non-linear beam optics, modelling of externally applied or beam-generated electro-magnetic fields, as well as theory, observations and simulations of single-particle dynamics and collective effects, both coherent and incoherent. It includes the following:

	T
C1. Beam Optics – Lattices, Correction	C6. Space Charge and Halos in High Intensity
Schemes, Transport	Accelerators
C2. Non-linear Single Particle Dynamics –	C7. Emittance Manipulation, Bunch
Resonances, Tracking, Higher Order,	Compression and Cooling
Dynamic Aperture, Momentum	C8. Code Developments and Simulation
Acceptance, and Code Developments	Techniques
C3. Calculations of EM Fields – Theory and	C9. Electron Cloud and Trapped Ion Effects
Code Developments	C10. Other Beam Dynamics
C4. Beam Coupling Impedance	,
C5. Coherent and Incoherent Instabilities	

D) Novel Particle Sources and Acceleration Techniques

Classification is devoted to (i) novel sources of particles, including electrons, protons, neutrons, ions, muons, secondary particles and antiparticles, and (ii) new concepts of acceleration techniques which may overcome the present limitations or which give access to novel beam characteristics (e.g. plasma accelerators, ultra-high gradient vacuum accelerators). Novel here refers to technologies or parameters that are not yet widely used in operation. It includes the following:

D1. New Acceleration Techniques	D5. Proton and Ion Sources
D2. Advanced Concepts	D6. Electron Sources
D3. High Intensity Accelerators	D7. Neutron Sources
D4. Radioactive Ions	

E) Accelerator Technology

Classification is devoted to contributions to the design, construction, testing and performance of accelerator components or subsystems, with emphasis on technological aspects and methods. Contributions with emphasis on achieving beam performance specific to an accelerator type or design should generally be classified elsewhere. It includes the following:

E1. Room Temperature RF	E9. Pulsed Power Technology
E2. Superconducting RF	E10. Collimation
E3. RF Power Sources	E11. Targetry
E4. Room Temperature Magnets	E12. Infrastructures
E5. Superconducting Magnets	E13. Timing and Synchronization
E6. Power Supplies	E14. Lasers
E7. Cryogenics	E15. Other Subsystems, Technology and
E8. Vacuum Technology	Components

F) Beam Instrumentation, Controls, Feedback and Operational Aspects

Classification is devoted to contributions to the design, Development, Novel Techniques of control and Instrumentation related to beam Diagnostics, Control, Interlock Protection system for accelerators. This will cover Sensor Electronics, Analog and Digital Hardware and Software. It includes the following:

F1. Beam Diagnostics and Instrumentation	F7. Machine Protection
F2. Accelerator/Storage Ring Control Systems	F8. Timing and Synchronization
F3. Beam Feedback Systems	F9. Laser based instrumentation
F4. Alignment and Surveying methods	F10. Photon Beam Lines and Components
F5. Radiation Protection, Monitoring and Safety	F11. Low Level RF
F6. Reliability, Operability	F12. Online Modeling and Software Tools

G) Applications of Accelerators, Technology Transfer and Industrial Relations

Classification includes contributions with emphasis on the broad applications of accelerators, the development of accelerator technologies for specific applications, aspects of technology transfer and laboratory-industry relationships.

G1. Medical Applications	G5. Security
G2. Industrial Applications	G6. AMS & Other Applications
G3. Materials Analysis and Modification	G7. Technology Transfer and Lab-Industry
G4. Transmutation and Energy Production	Relations

Manuscript Submission:

- For submitting manuscript, please login using your Username and Password.
- After login, a menu titled '**Submission**' will be visible in the menu bar. Under this menu there is a sub-menu titled '**Manuscript Submission**'.

- You can submit your manuscript using the 'Manuscript Submission' sub-menu.
- The accepted file extensions are .doc, .docx.
- The upload size limit is 2000 KB.

For any help, please write to: inapc2025@rrcat.gov.in